

Subject with Code: Hydrology &WRE (18CE0117)

Course & Branch: B.Tech CE

Regulation: R18

UNIT –I INTRODUCTION TO HYDROLOGY & HYDROGRAPH ANALYSIS

		****			0		660								IT 110011	
1	a What is the mean by surface run-off?								[L1][CO1]	[2M]						
	b What is the mean by sub surface run-off?								[L1][CO1]	[2M]						
										[L1][CO1]	[2M]					
	d Illustrate the assumptions of rational method?									[L2][CO1]	[2M]					
											[L1][CO1]	[2M]				
2	Ex	Explain with the help of a diagram the hydrological cycle with components?									[L2][CO1]	[10M]				
3	(a) Demonstrate your understanding about precipitation?									[L2][CO1]	[2M]					
	(b) Explain types and forms of precipitation?										[L1][CO1]	[8M]				
4		plain the f													[L2][CO1]	[10M]
5	W	hat is me	an	by In	filtrati	on? E	xplain	the	factors	whic	h affe	ect the	e rate	e of	[L1][CO1]	[10M]
	infiltration?															
6	Explain the water budget method and the energy balance method?									[L2][CO1]	[10M]					
7	(a) With the help of a neat sketch explain the single tube infiltrometer?									[L2][CO1]	[4M]					
	(b) Distinguish the difference between Φ -index and W-index?									[L2][CO1]	[6M]					
8	(a) Compute the weekly evaporation from a reservoir using the water-budget								[L3][CO1]	[4M]						
	method from the following data recorded during the week. Average															
	inflow into the reservoir is 32.5m3/s, average out flow from the reservoir															
	is 40.2m3/s, rainfall during the week is 73.6mm, average water spread															
	area is 15.8km2, estimated seepage is 0.25 million m3, storage at the															
	beginning of the week is 9180ha-m and storage at the end of the week is															
	8360ha-m.									[L1][CO1]	[6M]					
		(b) What														
9		plain the o								<u> </u>					[L3][CO1]	[10M]
10		e ordinate														
	intervals of rainfall magnitude of 3,5 and 4 cm respectively. Assuming a Φ -index															
	of 0.23cm/hr and a base flow of 30m3/s. Determine the resulting hydrograph															
		ime	0	6	12	18	24	30	36	42	48	54	60	66	[L4][CO1]	[10M]
	Ir	n hour														
	0	rdinate	0	250	600	800	700	600	450	320	200	100	50	0		
		f 6-hr			000	000						100				
		1.0 m $1.H(m^{3}/s)$														
L				1				1	1						1	

UNIT –II GROUND WATER& IRRIGATION

1	a Recall about an Aquifer?	[L2][CO1]	[2M]
	b Illustrate about an Aquiclude?	[L2][CO1]	[2M]
	c Write about an Aquifuge?	[L2][CO1]	[2M]
	d Explain in detail about porosity with sketch?	[L2][CO1]	[2M]
	e What is meant by specific retension?	[L1][CO1]	[2M]
2	Explain in detail about the different types of aquifers with neat sketch.	[L1][CO1]	[10M]
3	(a) Explain ground water well and basic assumptions?	[L2][CO1]	[5M]
	(b) In certain alluvial basin of 120km2, 100Mm3 of ground water was pumped in a	[L3][CO1]	[5M]
	year and the ground water table dropped by 5m during the year. Assuming no		
	replenishment, estimate the specific yield of the aquifer. If the specific retention		
	is 12%, what is the porosity of the soil?		
4	(a) What do you understand from Darcy's law, hydraulic gradient, seepage velocity.	[L2][CO1]	[5 M]
	(b) Enumerate about specific yield and elaborate the factors contribute the specific	[L2][CO1]	[5M]
	yield.		
5	(a) With a neat sketch explain Dupuit's theory for confined aquifer?	[L1][CO1]	[7M]
	(b) An undisturbed rock sample has an over dry weight of 1305gm. When it is	[L2][CO1]	[3M]
	completely saturated with kerosene it weighed 1436gm. The saturated sample,		
	when immersed in kerosene displaced 605gm of kerosene. What is the porosity		
	of the sample?		
6	Explain the necessity and importance of Irrigation?	[L2][CO2]	[10M]
7	List out the advantages of Irrigation in detail.	[L1][CO2]	[10M]
8	(a) Briefly discuss in detail with flow chart about the types of irrigation.	[L1][CO2]	[6M]
	(b) Define duty and delta of irrigation?	[L2][CO2]	[4M]
9	Explain in detail about the methods of application of irrigation water.	[L1][CO2]	[10M]
10	(a) Enumerate in detail about factor affecting duty of irrigation water.	[L1][CO2]	[5M]
	(b) Explain in detail about the methods of improving duty	[L2][CO2]	[5M]

UNIT –III WATER REQUIREMENT OF CROPS & CANAL REGULATION WORKS

1	a What is kor period?	[L1][CO3]	[2M]						
	b Explain the terms outlet factor.	[L2][CO3]	[2M]						
	c Illustrate the terms crop overlapping allowance.	[L2][CO3]	[2M]						
	d What is water requirement of crop?	[L1][CO3]	[2M]						
	e What is kor depth?	[L1][CO3]	[2M]						
2	Explain any five irrigation efficiencies	[L1][CO3]	[10M]						
3	A water course commands an irrigation area 1000 hectares. The intensity of irrigation	[L3][CO3]	[10M]						
	of rice in this area is 70%. The transplantation of rice crop takes 15 days and during								
	the transplantation period the total depth of water required by crop on field is								
	500mm. during transplantation period, the useful rainwater falling on field is 120mm.								
	Find during transplantation, at head of field and also at head of water course. Also								
	calculate the discharge required in water course.								
4	(a) Illustrate about G.C.A. and C.C.A.	[L2][CO3]	[6M]						
	(b) Briefly detailed about Culturable cultivated area and Culturable uncultivated	[L1][CO3]	[4M]						
	area?								
5	A field of 4 hectares has an average root zone depth of 1.0m, a field capacity of	[L3][CO3]	[10 M]						
	18% (both by weight). Assume that it's desirable to irrigation when 60% of								
	available moisture has been extracted. The field is irrigated by a sprinkler system								
	which delivers 300m^3 /hour over a period of 12 hours. What is water application								
	efficiency? Density of soil is 1400kg/m3.		540) (]						
6	Explain with neat sketch about the types of fall in dam irrigation?	[L2][CO4]	[10M]						
7	What is roughening device in canal? And also explain its varieties?	[L1][CO4]	[10M]						
8	Write the design step by step procedure for sarada type falls with formulas?	[L3][CO4]	[10M]						
9	Design a Sarada type fall for the following set of data. Full Supply Discharge-14	[L4][CO4]	[10M]						
	m3/s, Bed width- 18 m, Full Supply Depth (FSD) - 1.5 m, Full Supply Level								
	(U/S) -101.00 m, Full Supply Level (D/S) -100.00 m, U/S Bed Level -99.5 m,								
	D/S Bed Level- 98.5m, Natural Surface Level-99.5 m (D/S), Bligh's Coefficient								
10	(c) is -8.								
10	(a) Write the function of cross regulators and distributor head regulators?(b) Write the criteria to decign the creat level and length of downstream floor in cross	[L1][CO4]	[6M]						
	(b) Write the criteria to design the crest level and length of downstream floor in cross	[L3][CO4]	[4M]						
	regulator design.								

UNIT –IV CROSS DRAINAGE WORKS& RESERVOIR PLANNING

1	a	List the purpose of constructing reservoirs	[L1][CO5]	[2M]			
	b	What is cross drainage work	[L1][CO5]	[2M]			
	c	Write about the types of investigation carried for reservoir planning.	[L1][CO5]	[2M]			
	d	What is flood routing	[L1][CO5]	[2M]			
	e	Illustrate about safe yield	[L2][CO5]	[2M]			
2	Ela	aborate about cross drainage work and detailed its types.	[L2][CO5]	[10M]			
3	(a)	Illustrative the criteria's to select the suitable type of cross drainage work.	[L2][CO5]	[8M]			
	(b)	[L1][CO5]	[2M]				
4	De	[L3][CO5]	[10M]				
5	5 What are the various factors on which the selection of the site of a reservoir depends? [L2][CO5						
6	6 Explain the different types of zones of storages in the reservoir with the help of neat [L1][C0						
	sketch						
7	(a)	Explain the mass inflow curve and demand curve.	[L2][CO5]	[5M]			
	(b) Write a procedure for calculation of life of a reservoir. [L2][CO5]						
8	Write the calculation of reservoir capacity for a specified yield from mass inflow [L3][CO5]						
	curve.						
9	W	hat is flood routing and explain about method of flood routing by graphical method.	[L1][CO5]	[10M]			
10	Ex	plain various types of reservoirs?	[L1][CO5]	[10M]			

UNIT –V DAMS& GRAVITY DAMS

example. [L1][CO6]	[2M]					
[L1][CO6]	[2M]					
[L2][CO6]	[2M]					
[L2][CO6]	[2M]					
avity dam. [L2][CO6]	[2M]					
according to use in detail with [L2][CO6]	[10M]					
s of any two types of dam. [L2][CO6]	[7M]					
[L2][CO6]	[3M]					
ype of dam. [L2][CO6]	[10M]					
site for a dam? [L2][CO6]	[10M]					
1? [L1][CO6]	[2M]					
(b) Write briefly on various forces that act on a gravity dam. [L2][CO6] [8]						
Discuss in detail various modes of failure of a gravity dam. [L2][CO6]						
nalytical method. [L3][CO6]	[10M]					
Draw and explain the elementary profile of a gravity dam. [L2][CO6]						
p and 4.5 m wide at the bottom, [L3][CO6]	[10M]					
at the toe and heel for reservoir						
x=1.						
	[L2][CO6]avity dam.[L2][CO6]avity dam.[L2][CO6]according to use in detail with[L2][CO6]s of any two types of dam.[L2][CO6]ype of dam.[L2][CO6]site for a dam?[L2][CO6]it for a dam?[L2][CO6]it dam.[L2][CO6]it dam.[L2][CO6]it dam.[L2][CO6]it dam.[L2][CO6]it the toe and heel for reservoir					

Prepared by:

Mr. L.JAGADEESWAR REDDY Assistant Professor/CIVIL